Aps Votes Centra 6 p. 2017

Анализ Углерода в Нержавеющих и Углеродистых сталях с портативным лазерным анализатором SciAps Z.

Введение

Представленный здесь метод анализа Углерода в нержавеющей и углеродистой стали использует портативную технологию лазерной эмиссионной спектроскопии (LIBS или ЛИЭС). SciAps Z-200 C+ единственный в мире портативный анализатор, способный определять Углерод в сплавах. Z-200 применяет импульсный лазер 1064 нм, мощностью 5,5 мДж/имп. и частотой 50 Гц. Спектрометр имеет диапазон длин волн: 190 нм - 620 нм. Специальный спектрометр высокого разрешения (0,06 нм FWHM) охватывает диапазон эмиссионных линий C - 193 нм. Анализатор имеет встроенную систему обдува аргоном, сменный баллончик расположен в ручке. 1-го баллона хватает на 125-150 тестов по Углероду. Для анализа прочих сплавов расход: 1 баллончик на 600 тестов.

Что включается в Приложение Углерод

Модель Z-200 C+:

- Основа нержавеющая сталь, Углерод, и другие элементы Si, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Nb, Mo, Se, W.
- Калибровка для сплавов на основе Fe, включающая эл-ты: Si, Al, Ti, V, Cr, Mn, Co, Ni, Cu, Nb, Mo, W, Pb, Fe -осн.
- Калибровка на Углерод от 0 до 1%. Пользователь может расширять диапазон или создавать дополнительные калибровки, например, для чугунов.
- Формулы и вычисление Углеродного Эквивалента (СЕ), коеффициенты Mn:С и суммы примесей.
- ПО Profile Builder для компьютера/планшета для создания пользовательских калибровок по Углероду для разных основ или в других диапазонах.
- Контрольные образцы (3) для контроля калибровки и дрифт коррекции.

В программу любого анализатора серии Z можно добавить дополнительные калибровочные основы - Ni, Ti, Al, Cu, Co и др., как в момент покупки, так и после поставки.

Параметр	Значение (% абс.)	Коментарии
Предел Обнаружения	0.015	Предел обнаруж. С по 3-м сигмам.
Точность @ 0.02% C (абс.)	± 0.005%	
Точность @ 0.2% C (абс.)	0.01%	
Основа Fe: Время теста, правильная пробоподготовка.	10-15 s	Включая предв. зачистку и продувку аргоном. Обычно усреднение из 3-х, 3 сек. тестов, плюс пред.обжиг и продувка.
Основа нерж. сталь: Время теста, правильная пробоподготовка.	15-20s	Включая предв. зачистку и продувку аргоном. Обычно усреднение из 4-5-ти, 3 сек. тестов плюс пред.обжиг и продувка.

Таб. 1. Аналитические Характеристики Z-200 C /C+ по Углероду

Обзор аналитических возможностей

Данные по Углероду были получены с нескольких анализаторов, использованы образцы нержавеющей и низколегированной стали. Z измеряет также литые чугуны. При правильной зачистке образцов общее время анализа 10 - 20 сек., в зависимости от качества тестов (далее подробнее об отбраковке тестов). Время теста для сталей, отличающихся сод. 0.1% С и более, < 10 сек. Аналитические результаты показаны в Таб. 1.

Калибровка и Точность

Сплавы с Нерж. ст. в основе

Калибровка на Высоколегир. Нерж. Стали

Глобальная калибровка для нержавеющей стали производится на станд. обр.: 304, 304L, 316, 316L и 317L с содерж. до 0,15%C. На Рис. 1 показана данная калибровочная кривая. Пользователи могут расширить калибровочную матрицу или создать дополнительные калибровки по типу, например, для нержавейки с высоким никелем, такие как A286 и 904L.

SciAps рекомендует использовать минимум 4 точки (образца) и линейную зависимость. Это позволяет предотвратить появление ошибочных результатов, связанных с некачественной пробоподготовкой. Если в калибровку включен плохо подготовленный образец, точка не будет лежать на прямой линии на графике. В целом, Глобальная калибровка по С дает хорошие

результаты для разделения низколегир., высоколег. и углеродистых сталей. В случаях, когда содержание С близко к 0.03%, можно использовать Типовую калибровку, теперь возможную для Z. Если требуется сверхточность, рекомендуется добавить Типовую калибровку по представительному, сертифицированному станд. образцу. Этот метод широко применяется для OES, но также хорошо работает и для LIBS.

В начале теста Z выполняет пред-обдув, пред-обжиг, а затем серию из трех замеров. После каждого теста отображается среднее. Z предлагает как автоматическое, так и ручное (т. е. заданное оператором) отклонение теста. Пользователь может, коснувшись экрана, удалить любой тест из полученного усредненного резта. Автоматическая отбраковка теста настроена для устранения первых 1-2 замеров, или самые высокие и низкие значения (отбраковка макс. высок,/низк. рез-тов). Большинство Операторов, имеющих опыт анализа C на ОЕЅ анализаторах, предпочитают принимать собственные решения по качеству и отбраковке полученных замеров.

Пример применения: Разделение 316 и 316L

Рассмотрим важный пример разделения марок нержавейки 316 и 316L. Z-200 С /С+ показывают на экране несколько обжигов и высчитывают среднее, также как на искровых ОЕS. Первая таблица ниже (Таб. 2) показывает результат 5-ти тестов на станд. образцах нержавейки марок 316 и 316L, затем самый высокий и самый низкий рез-ты были автоматически исключены. Рез-ты обычно хорошо согласуются с химсоставом материала. Отклонение между последовательными тестами около 0.006% (60 ppm). Материал 316L в этом примере - это сертифицированный образец с содерж. 0.016% С, что чуть больше предела обнаружения по С для Z 200C+, который составляет 0.015%. Эти два сплава были легко разделены менее, чем за 20 сек.

Глобальная калибровка на нержавейку/углерод была использована для данной задачи. На практике многие используют метод рекалибровки "по одной точке" или типовую калибровку для своих OES анализаторов для достижения более точных рез-ов. Это приемлемо в случае, если пользователь заранее знает марку и химию до начала тестов. В ПО Z для анализа Углерода также была добавлена функция типовой калибровки.

Это пример типичной отбраковки результатов тестов. В данном случае Оператор проводил тесты 7 раз, все резты тестов показаны. Программа Z, если по умолчанию работает отбраковка выского-низкого рез-тов, исключает эти тесты, выделенные красным. Среднее в каждом случае дано в конце таблицы. Обычно средний результат по C не очень меняется из-за отбраковки. Почти всегда 1-ый тест отклоняется, т.к. может быть необходимо больше предобжига.

Калибровка Углерод в Нерж. сталях

3 показывает результаты по нержавейке марки 304.

		Калибровка Угле	ерод в Нерж. сталях
Углерод LIBS (%)	0.09		T
	0.08		y = 1.036x - 0.001 R ² = 0.991
	0.07	• Series1	
	0.06	——Linear(Series1)	Į.
	0.05	I	
	0.04		I
	0.03	I	
	0.02		
	0.01	İ	
	C	0 0.01 0.02 0.03 0.04	0.05 0.06 0.07 0.08
	-0.01	Углерод Хим	иия (%))

Рис 1. Калибровка по Углероду для высоко- и низко-легир. нерж. сталей

Рез-ты тестов по С (%)			
Марка 316	Марка 316L		
0.050	0.015		
0.052	0.028		
0.057	0.022		
0.041	0.016		
0.052	0.011		
Avg C %			
0.050	0.018		
Assay			
0.049	0.049 0.016		
The second second			

Табл. 2 показ. типичный рез-т анализа марок 316 и 316L с использованием глобальной калибровки Углерод в Нерж. сталях.

Табл. 3 показана серия тестов 304 стали; выделено цветом автоматическое отклонение

Тест №	Углерод %	Высок. %/Низк .% Отклонение
1377	0.070	
1378	0.048	0.048
1379	0.033	-
1380	0.052	0.052
1381	0.044	0.044
1382	0.049	0.049
1383	0.045	0.045
Среднее С(%) 0.049	0.048
Химия (С%)	0.051	0.051

Сплавы на основе Fe

Глобальная Калибровка по Углероду, Когда

Применять?

Глобальная калибровка для основы Fe показана на Puc. 2. Она охватывает различные типы углеродистых и низколегированных сталей, вкл. углеродистые 10ХХ и 1117, низколегир. стали, включая 14ХХ, (ХХ указывают содержание С, выраж. в сотых %, от 0.18 до 0.50), 4340, 4620, 4820, 8620 и некоторые др. марки сталей, плюс Cr-Мо стали. Глобальная калибровка - отличное решение, если нужно разделение углеродистых сталей, отличающихся сод-нием С 0.1% и более: Ст. 30 от Ст. 40 или Ст. 10 от Ст. 20.

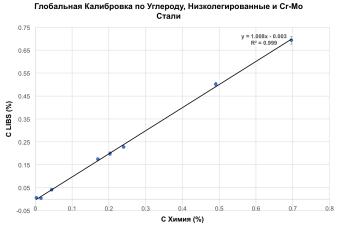
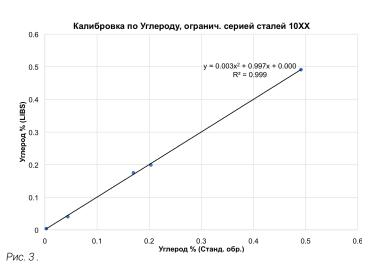



Рис. 2

Калибровка на подтипы Углеродистой Стали, когда применять?

Для более точной сортировки углеродистых сталей, отличающихся содержанием 0.05% С или менее, можно ограничить калибровочную кривую и диапазон до группы, включающей только интересующие нас стали. Например, для разделения углеродистых сталей: Ст.10, Ст.20, Ст.30 модифицируйте Глобальную калибровку, чтобы она включала углеродистые стали только в этом диапазоне концентраций. Рез-ты такой же глобальной калиб. кривой, ограниченные диапазоном от нуля (чистого железа) до 0.5% показаны на Рис.3. Как видно из графика, с этой типовой калибровкой, с более ограниченным диапазоном, Z 200 обеспечивает надежное разделение интересующих марок углеродистых сталей.

Точность,, Углеродистые Стали, Металлы из реального мира

Часть испытаний нового метода анализа Углерода проводились на реальных образцах для прикладных производственных задач. Здесь представлены рез-ты анализа трубопровода, материал - сталь А108 (0.161% С), предоставлен ведущим НПЗ. Эти компоненты находились в эксплуатации. Пробоподготовка проведена методом, который будет описан ниже, далее обычная процедура анализа с использованием Глобальной калибровки, показанной на Рис.1. Z предлагает метод, определяющий ОБА наиболее важных элемента: Марганца (Мп) и Углерода (С), для большей надежности подтверждения материалов.

Контроль углеродистых сталей в реальном мире проводится с помощью 3-х Замеров в течение 6-ти часов. 1 -ый Замер проводят после прогрева, с повторами через 3 часа и 6 часов. Воспроизводимость для каждого Замера показана в Таб. 4. Эти рез-ты получены без использования типовых калибровок и дрифт-коррекции между Замерами. При конц. 0.16% С, получена воспроизводимость лучше, чем +/- 0.01%, это доказывает, что углеродистые стали, отличающиеся содерж. 0.05% С и более могут быть легко разделены. Есть небольшой bias результатов, но это решается с помощью Типовых Калибровок или сокращением числа станд. образцов для построения калибр. кривой.

Таб. 4. Повторяемость данных на на углеродистой стали A 108, предоставлено ведушим НПЗ.

Рез-ты С на стали 1016, с повтором в период 8 часов				
Замер 1	Замер 2	Замер З		
0.150	0.162	0.162		
0.151	0.161	0.164		
0.151	0.160	0.155		
0.144	0.151	0.155		
0.148	0.135	0.146		
Среднее %				
0.149	0.154	0.156		
Химия %				
0.161	0.161	0.161		

Метод

Метод требует пробоподготовки специальной машинкой и дисками, затем тестирование на Z-200. Мы рекомендуем ручную шлифмашинку, мощностью >5000 об./мин., с керамическими Al20 или ZrO дисками, с зерном мин. 50 grit.

Определения: "тест" - одиночный тест на лазерном анализаторе Z. "результат" — это значение, которое состоит из 3+ «хороших», или принятых программой прибора тестов, автоматически усредненных. Время каждого Теста - 3 сек., а Результата соответственно - 9 -15 сек. (зависит от кол-ва усредняемых тестов).

С Z-200 C+ можно работать в ручном режиме или выбрать автонастройки. В ручном режиме выполняется предобдув, пред- обжиг и 5 последовательных 3 сек. тестов (по умолчанию для нерж. осн.) или 3 послед. 3 сек. теста (по умолчанию для Fe основы). Каждый тест показан на дисплее вместе с усреднением. Оператор может удалить (прикосновением) один или более тестов из усреднения. Простонажав накурокможно добавить новые тесты. Можно использ. менее 5 тестов, но не менее 3-х необходимо для нерж.стали и Fe основы.

ТЕСТ - однократный анализ материала, состоящий из пред-обжига поверхности и спектральных данных из 6 разных точек удара лазера. На Рис. 5 показан тест с 6 прожогами.

РЕЗУЛЬТАТ -

усредненный рез-т по 5 пригодным тестам. Результат показывает измеренный % С и

Рис. 5

Есть две опции автонастройки теста: отбраковка по высок./ низк. значениям и отбраковка по воспроизводимости. Для отбраковки по высок./низк. значениям заключительный рез-т - это среднее из всех принятых тестов, кроме самых высокого и низкого знач. по С. Такой режим потребует не менее. 5 тестов. Примечание: SciAps разрабатывает другие методы отбора (отбраковки) тестов на основе рекомендаций своих Покупателей.

Дляотбраковки по воспроизводимости Z передвигает лазер во время теста в 6 дискретных позиций. Спектральные данные собираются за 0.5 сек в каждой точке. ПЛМ типа FPGA и процессор Андроид анализируют спектральные данные и сравнивают интенсивности Углерода,

полученные из 6 точек. Z отбраковывает тест, если стандартное отклонение коэффициента интенсивности углерода превышает границы предустановленного Пользователем. Программа предложит продолжать тесты до тех пор, пока не будет получено 5 хороших тестов (для нержавейки) или 3 теста (для железа). Для менее опытного Оператора, особенно в отношении пробоподготовки, требуемой для хорошего анализа C, автоматическая установка по отбраковке - отличная функция. Чем лучше пробоподготовка тем меньше тестов будет отклонено.

Отбраковка тестов по воспроизводимости - критерий, используемый в анализаторе Углерода Z SciAps - это превосходная функция для подтверждения правильности пробоподготовки.

Отклонение по воспризводимости-это преимущество дискретности лазерных импульсов, применяемых технологией LIBS. Лазер стреляет в нескольких местах и дает коэффициенты интенсивности в шести различных, дискретных точках.

Искровые OES не могут предложить эту функцию, т. к. искра прожигает в одном месте- большого диаметра "точке", а не в 6-ти послед. точках.

Типовые Калибровки - Теперь Возможны!

Благодаря рекомендациям наших первых Пользователей, мы добавили опции Типовой калибровки и Калибровки по одной точке в программу Z. Также как с OES, если нужна более более высокая точность для известных материалов (304L, 316L и пр.), можно измерить представительный станд. обр-ц несколько раз, ввести химию, построить калибровку и применять ее для подтверждения марок на партиях схожих материалов.

Заключение

SciAps Z 200 и Z 300 - портативные лазерные LIBS анализаторы, обеспечивающие определение Углерода в углеродистых и легированных сталях. Метод требует зачистки специальной шлифмашинкой с последующим 15 сек (типично) тестом на анализаторе Z с серии. Время анализа включает пред-обжиг и обдув аргоном. При правильной пробоподготовке Z надежно различает Тщательная пробоподготовка и продувка аргоном - критически важные факторы для анализе Углерода с портативными LIBS.

www.sciaps.com www.sciaps-russia.ru тел 8 499 350 6650 info@sciaps-russia.com