Измерение толщины покрытий из драгоценных металлов с использованием вихретокового вида контроля

Сотрудники ЗАО «Константа» Санкт-Петербург

Сясько Владимир Александрович Генеральный директор, Д. т. н. Научные интересы: контроль физикомеханических характеристик, микро- и наноструктурированных материалов.

Ивкин Антон Евгеньевич Ведущий специалист, к. т. н.

еребро, золото, медь, родий, а также их сплавы широко применяются для покрытия изделий из латуни, бронзы, титана и других конструкционных цветных металлов в различных отраслях промышленности, главным образом в электротехнической. Диапазон толщин, рекомендуемый ГОСТ 9.303 для основной массы упомянутых покрытий, составляет от 0,5 до 15 мкм, а максимальная толщина покрытия из драгоценного металла, как правило, не превышает 6-9 мкм. Электропроводность о серебряных, медных покрытий, а также покрытий из их сплавов лежит в диапазоне от ≈ 55 до ≈ 65 МСм/м, электропроводность золотых покрытий и покрытий сплавами родия несколько ниже и лежит в диапазоне ≈ 45 ÷ 50 МСм/м. Электропроводность оснований о находится в диапазоне от ≈ 2 (титан) до ≈ 16 МСм/м (латунь марки ЛС, некоторые виды бронзы). Для перечисленных сочетаний покрытие/основание относительная электропроводность покрытия $\sigma_{_{\rm N}}/\sigma_{_{\rm O}}$ будет лежать в диапазоне от 32,5 (серебро на титане) до 2,8 МСм/м (золото на латуни).

Задача измерения толщины покрытий может быть решена с использованием вихретокового вида контроля.

Объект контроля представляет собой электропроводящее неферромагнитное покрытие толщиной T_n и электропроводностью σ_n на неферромагнитном электропроводящем основании электропроводностью σ_0 . Вихревые токи, индуцированные в объекте контроля, распространяются как в покрытии, так и в основании. Можно говорить о некотором интегральном значении электропроводности σ_u объекта контроля в объеме распространения вихревых то-

В.А. Сясько, А.Е. Ивкин

Рис. 1. Структурная схема вихретокового фазового преобразователя: У₁ – У₃ — усилители, ФД — фазовый детектор, ФНЧ1 – ФНЧ2 — фильтры низкой частоты, *W*₈ — обмотка возбуждения, *W*_k и *W*_и — дифференциально включенные компенсационная и измерительная обмотки, МК — микроконтроллер, *R*₁ — управляемый цифровой балансировочный потенциометр

ков, которая изменяется в зависимости от толщины покрытия T_n . Так, если $T_n = 0$, то $\sigma_u = \sigma_0$. При увеличении толщины покрытия от нуля до значения $T_n = \infty \sigma_u$ будет изменяться от σ_0 до σ_n [2].

Вихретоковый фазовый метод измерения толщины металлических покрытий основан на анализе взаимодействия собственного электромагнитного поля первичного преобразователя с электромагнитным полем вихревых токов, наводимых в контролируемом объекте, зависящих от T_n , σ_n , σ_o и геометрических характеристик основания и покрытия (диаметра d, шероховатости R_z и др.), а также от величины зазора h между металлическим покрытием и контактной поверхностью преобразователя.

Структурная схема трансформаторного трехобмоточного вихретокового фазового преобразователя, использующего в качестве опорного сигнала напряжение на компенсационной обмотке, изображена на рис. 1. Преобразователь выполнен в малогабаритном цилиндрическом корпусе, соединяемом с электронным блоком кабелем, по которому подается напряжение питания и организуется цифровой канал связи UART с блоком обработки и представления результатов измерений.

На рис. 2 представлен чувствительный элемент трансформаторного трехобмоточного вихретокового преобразователя, реализованный на стержневом феррите.

Рис. 2. Чувствительный элемент трансформаторного трехобмоточного вихретокового преобразователя со сменным защитным колпачком: 1 — измерительная $W_{_{\rm H}}$, 2 — возбуждающая $W_{_{
m B}}$ и 3 — компенсационная $W_{_{
m K}}$ обмотки, 4 — ферритовый сердечник, 5 — защитный колпачок, 6 — корпус

Витки обмоток и ферритовый сердечник фиксируются вместе клеем, а удерживающие элементы соединяются с корпусом так, чтобы усилие нажатия на сердечник не передавалось обмоткам. Чувствительный элемент имеет близкие к минимальным технологически достижимые размеры. Ферритовый сердечник от истирания защищен сменным защитным колпачком, отлитым из стеклонаполненного полимера, с квазисферической контактной поверхностью. Элементы электронной схемы располагаются на печатной плате, также устанавливаемой внутри корпуса преобразователя.

Обмотка $W_{\rm B}$ запитывается синусоидальным напряжением $u_1(t)$ частоты f. Усиленное разностное (вносимое) напряжение $\Delta u(t, T_{\rm n})$ поступает на фазовый детектор ФД. Опорным сигналом для детектора служит напряжение $u_{\rm k}(t)$ с выхода компенсационной обмотки $W_{\rm k}$. Постоянное напряжение $U_{\Delta \varphi}$ на выходе фильтра низкой частоты пропорционально разности фаз $\Delta \varphi$ между напряжениями $u_{\rm k}(t)$ и $\Delta u(t, T_{\rm n})$. Балансировка обмоток преобразователя производится с использованием цифрового потенциометра, управляемого микроконтроллером.

Максимальная частота тока возбуждения $f_{_{Max}}$ = 1,8 МГц, погрешность измерения разности фаз не более ± 0,1°.

Для расчета параметров измерительного преобразователя удобно использовать обобщенный параметр β : $\beta = R (2\pi f \sigma \mu_0)^{1/2}$, где R — эквивалентный радиус обмотки возбуждения; σ — электропроводность материала; μ_0 — магнитная постоянная.

Конструкция чувствительного элемента на рис. 2 при указанном диаметре ферритового сердечника обеспечивает эквивалентный радиус обмотки возбуждения *R* ≈ 1 мм. Вариация *T*_п будет приводить к изменению σ_и и, соответственно, β. Для обеспечения приемлемой чувствительности величину β (σ_n) следует выбирать на уровне ≈ 5 ÷ 30 [4].

В общем случае глубина проникновения вихревых токов δ , определяющая максимальную измеряемую толщину покрытия $T_{n \max}$ и минимальную толщину основания $T_{0 \min}$ равна: $\delta = 1/(\pi f \sigma \mu_0)^{1/2}$. В соответствии с [5] диапазон измерения $T_{n \max} = (0,6 \div 0,8) \delta$, а минимальная допустимая толщина основания $T_{0 \min} = 2,5\delta$.

Отсюда следует, что оптимальное значение частоты преобразователя $f_{ont} \approx (0,36 \div 0,64)/(\pi\mu_0 \sigma_n T_{nmax}^2).$

Для обеспечения оптимального β , значение эквивалентного радиуса *R* обмотки $W_{\rm B}$ необходимо выбирать из условия: $R = \beta/(2\pi f \sigma \mu_0)^{1/2}$.

При анализе характеристик преобразователей следует учесть влияние мешающих параметров:

- зазора h между преобразователем и покрытием;
- диаметра d основания в зоне измерения и его вариации;
- шероховатости *R*, поверхности изделия;
- вариации электропроводности основания и покрытия.

Граничными задачами измерения являются следующие: 1) серебро/титан (σ_n/σ_o ≈ 60/2); 2) золото/латунь (σ_n/σ_o ≈ 45/16). При частоте тока возбуждения 1,8 МГц для рассматриваемых материалов глубина δ, мкм, проникновения вихревых токов будет следующей: для титана ≈ 265, для латуни ≈ 94, для золота ≈ 56, для серебра ≈ 48. Соответственно, обобщенные параметры β будут иметь значения приблизительно 5,3; 15,1; 25,3 и 29.

Напряжение на измерительной обмотке равно сумме напряжения \dot{U}_{0} , возникающего в отсутствие контролируемого изделия, и вносимого (разностного) напряжения $\dot{U}_{_{\rm BH'}}$ возникающего вследствие влияния изделия с покрытием: $\dot{U} = \dot{U}_{_{0}} + \dot{U}_{_{\rm BH'}}$. Относительное вносимое напряжение определяется по формуле [4]:

$$\begin{split} \dot{U}^{*}_{_{BH}} &= \dot{U}_{_{BH}} / |\dot{U}_{_{0}}| = (j\pi\mu_{_{0}}R_{_{B}}R_{_{H}}/M) \int_{1} (\lambda R_{_{B}}) J_{_{1}} (\lambda R_{_{N}}) e^{-\lambda |z_{B}+z_{N}|} \chi_{_{0}} d\lambda, \\ \text{3decb } \chi_{_{0}} &= [(\lambda - q_{_{1}}) (q_{_{1}}+q_{_{2}}) e^{T_{n}q_{1}} - (\lambda + q_{_{1}}) (q_{_{2}} - q_{_{1}}) e^{-T_{n}q_{1}}/[(\lambda + q_{_{1}}) (q_{_{1}}+q_{_{2}}) e^{T_{n}q_{1}} - (\lambda - q_{_{1}}) (q_{_{2}} - q_{_{1}}) e^{-T_{n}q_{1}}]; q_{_{1}} &= (\lambda^{2} + j\mu_{_{0}}\sigma_{_{1}}\omega)^{1/2}, \end{split}$$

где T_n — толщина покрытия; R_B — радиус обмотки возбуждения; R_{μ} — радиус измерительной обмотки; z_{μ} , z_B — расстояние от измерительной обмотки и обмотки возбуждения до поверхности изделия соответственно; J_1 (λR_i) — функция Бесселя первого порядка; λ — параметр преобразования; $\sigma_i = \sigma_n$ — электропроводность покрытия; $\sigma_i = \sigma_0$ — электропровод-

ность основания; *M* — коэффициент начальной взаимоиндукции между обмотками; ω = 2π*f* — круговая частота тока возбуждения.

При расчетах можно принять радиусы обмоток равными радиусу ферритового сердечника [3]. На рис. За представлена рассчитанная в соот-

Рис. 3. Зависимость комплексного вносимого напряжения $\dot{U}^*_{_{\rm BH}}$ от измеряемого ($T_{_{\rm CP}}$ — кривая 2), мешающего (h — кривые 3, 4) обобщенного (β — кривая 1) параметров: a — исходный годограф вектора $\dot{U}^*_{_{\rm BH}}$ со смещением точки начала координат на величину $U_{_{\rm DA3}}$

ветствии с последней формулой зависимость комплексного относительного вносимого напряжения $\mathring{U}^*_{_{\rm BH}}$ для граничной задачи серебро/титан (кривая 2). На этом же рисунке кривая 1 — годограф $\mathring{U}^*_{_{\rm BH}}$ (β), кривые 3 и 4 — линии отвода $\mathring{U}^*_{_{\rm BH}}$ (*h*). Амплитуда и фаза относительного вносимого напряжения определяется выражениями:

 $\mathring{U}^{*}_{_{\mathrm{B}\mathrm{H}}} = \{ \mathring{U}^{*}_{_{\mathrm{B}\mathrm{H}}} \} = \{ \operatorname{Re} \left[\mathring{U}^{*}_{_{\mathrm{B}\mathrm{H}}} \right]^{2} + \operatorname{Im} \left[\mathring{U}^{*}_{_{\mathrm{B}\mathrm{H}}} \right]^{2} \}; \varphi = \operatorname{arctg} \{ \operatorname{Im} \left[\mathring{U}^{*}_{_{\mathrm{B}\mathrm{H}}} \right] / \operatorname{Re} \left[\mathring{U}^{*}_{_{\mathrm{B}\mathrm{H}}} \right] \}.$

Основными мешающими параметрами при измерениях серебряных покрытий являются шероховатость R_z и диаметр d (кривизна) основания, а также их вариация. Этим параметрам можно поставить в соответствие эквивалентные зазоры h_z между опорной поверхностью преобразовате-

Рис. 4. Зависимость $\Delta \phi$ вносимого напряжения $\dot{U}^*_{\ вн}$ при изменении контролируемого (T_{cn}) и мешающего (h) параметров

ля и покрытием [6]. Так, d = 25 мм соответствует $h_{_{9}} \approx 40$ мкм; d = 10 мм соответствует $h_{_{9}} \approx 100$ мкм. На рис. 4 представлены зависимости фазы $\Delta \phi$ вносимого напряжения $\dot{U}^{*}_{_{\rm BH}}$ при изменении контролируемого ($T_{_{\rm CP}}$) и мешающего (h) параметров.

Из представленных графиков видно, что, например, изменение h на 0,3 мм вызовет сдвиг фазы $\Delta \phi$ более чем на 2°. Если в качестве градировочной характеристики преобразователя выступает зависимость $\Delta \phi(T_{cp})$, то подобное изменение h может вызвать появление дополнительной абсолютной по-

грешности измерения толщины серебряного покрытия до 4 мкм.

Из рис. За видно, что годограф $\mathring{U}^*_{_{\rm BH}}(h)$ является практически прямой линией в некотором диапазоне изменения h (отрезок AB). Если сместить точку начала координат в точку $C_{_{\rm TM}}$, то при изменении h на отрезке AB будет изменяться только амплитуда вектора $\mathring{U}^*_{_{\rm BH}}$. Использование фазы φ вносимого напряжения $\mathring{U}^*_{_{\rm BH}}$ в качестве первичного информативного параметра позволяет исключить влияние изменения зазора h в определенном диапазоне на результат измерения. Соответствующая зависимость представлена на рис. Зб.

Смещение точки начала координат достигается разбалансировкой измерительной и компенсационной обмоток на требуемую величину

напряжения разбалансировки $\mathring{U}_{\text{раз}}$ с помощью подстроечного резистора R_1 балансировочной схемы.

Очевидно, что чем меньше диапазон, в котором требуется осуществлять отстройку, тем более линейна зависимость $\mathring{U}^*_{_{\rm BH}}(h)$, и тем меньшее влияние на результат измерения толщины T_n будет оказывать девиация зазора h.

На рис. 5 представлены зависимости фазы $\Delta \varphi$ вносимого напряжения $\mathring{U}^*_{_{\rm BH}}$ при изменении контролируемого ($T_{_{\rm CP}}$) и мешающего (h) параметров для четырех вариантов балансировок преобразователя. $\mathring{U}_{_{\rm pas}}$ рассчитывалась для четырех диапазонов h: [0...0,1], [0...0,3], [0...0,5] и [0...1] мм.

Максимальное изменение Δφ наблюдается в середине диапазона, в котором осуществлялась отстройка. Так, в диапазоне h [0...1] мм $\Delta \phi_{max} = -0,9^{\circ}$ при $h = 0,4 \div 0,5$ мм, а в диапазоне h [0...0,3] мм $\Delta \phi_{max} = -0,2^{\circ}$ при h = 0,15 мм. При изменении балансировки преобразователя зависимость $\Delta \phi$ (T_{co}) изменяется несущественно. При совмещении зависимости $\Delta \phi$ (T_{cp}) и $\Delta \phi$ (h) видно, что балансировка преобразователя существенно снижает дополнительную погрешность измерения, обусловленную изменением h. Например, при девиации зазора h в интервале от 0 до 0,3 при соответствующей балансировке максимальная дополнительная погреш-

ность измерения толщины серебряного покрытия не превысит 0,5 мкм. Напомним, что при отсутствии соответствующей балансировки дополнительная погрешность измерения составляет 4 мкм.

Калибровка прибора (при необходимости) в процессе эксплуатации представляет процедуру установки чувствительности с использованием комплекта мер толщины покрытия/основания и установку нуля на образце реальной продукции без покрытия. Калибровка прибора может выполняться также на образцах продукции. Для этого вначале необходимо изготовить образец толщины покрытия на изделии или на образце-свидетеле. Оптимальным для этих целей, по мнению авторов, является метод шарового микрошлифа [7], позволяющий измерять толщину покрытий с погрешностью не более ± 0,5 мкм на плоских и криволинейных изделиях, в том числе малоразмерных.

Разработанные в соответствии с изложенным выше преобразователи в комплекте с прибором «Константа К6» (вариант гальванический) позволяют производить измерение толщины покрытий серебра, меди, золота и их сплавов с электропроводностью от 45 до 65 МСм/м на основаниях из цветных металлов с электропроводностью от 2 до 16 МСм/м. Минимальный диаметр оснований $d_{\text{мин}} = 2$ мм, максимальная шероховатость $R_{\text{гтах}} \approx 20$ мкм. Основная абсолютная допустимая погрешность измерения ΔT_n не более ± 2 мкм. Прибор может быть укомплектован соответствующим аттестованным набором мер толщины покрытий (рабочими эталонами второго разряда).

Литература

1. Бабаджанов Л. С., Бабаджанова М. Л. Метрологическое обеспечение измерений толщины покрытий. — М.: Изд-во стандартов, 2004. — 264 с.

2. Потапов А. И., Сясько В. А. Неразрушающие методы и средства контроля толщины покрытий и изделий./Научное, методическое, справочное пособие. — СПб.: Гуманистика, 2009. — 904 с.

3. Дорофеев А. Л., Никитин А. И., Рубин А. Л. Индукционная толщинометрия. — М.: Энергия, 1978. — 184 с.

4. Неразрушающий контроль/Справочник в 8 т. под общей ред. В. В. Клюева. Т. 2, книга 2: Вихретоковый контроль. — М.: Машиностроение, 2006. — 688 с.

5. ISO 21968. Non-magnetic metallic coatings on metallic and non-metallic basis materials — Measurement of coatings thickness — Phase-sensitive eddy-current method.

6. Сясько В. А., Ивкин А. Е. Вихретоковая толщинометрия неферромагнитных металлических покрытий на изделиях из цветных металлов. — Мир измерений. 2010. № 6. С. 18–23.

7. Randall N. Finer particle size allows better coating characterisation with the Calotest // Appl. Bulletin No. 5. URL: http://www.csm-instruments.com/en/